Bounds on tail probabilities for quadratic forms in dependent sub-gaussian random variables
نویسندگان
چکیده
منابع مشابه
Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables
In this paper, we obtain the upper exponential bounds for the tail probabilities of the quadratic forms for negatively dependent subgaussian random variables. In particular the law of iterated logarithm for quadratic forms of independent subgaussian random variables is generalized to the case of negatively dependent subgaussian random variables.
متن کاملsome probability inequalities for quadratic forms of negatively dependent subgaussian random variables
in this paper, we obtain the upper exponential bounds for the tail probabilities of the quadratic forms for negatively dependent subgaussian random variables. in particular the law of iterated logarithm for quadratic forms of independent subgaussian random variables is generalized to the case of negatively dependent subgaussian random variables.
متن کاملAsymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables
In this paper we study the asymptotic behavior of the tail probabilities of sums of dependent and real-valued random variables whose distributions are assumed to be subexponential and not necessarily of dominated variation. We propose two general dependence assumptions under which the asymptotic behavior of the tail probabilities of the sums is the same as that in the independent case. In parti...
متن کاملTail Probabilities and Partial Moments for Quadratic Forms in Multivariate Generalized Hyperbolic Random Vectors
Countless test statistics can be written as quadratic forms in certain random vectors, or ratios thereof. Consequently, their distribution has received considerable attention in the literature. Except for a few special cases, no closed-form expression for the cdf exists, and one resorts to numerical methods. Traditionally the problem is analyzed under the assumption of joint Gaussianity; the al...
متن کاملBounds for Tail Probabilities of Weighted Sums of Independent Gamma Random Variables
The tail probabilities of two weighted sums of independent gamma random variables are compared when the first vector of weights majorizes the second vector of weights. The conjecture that the two cumulative distribution .functions cross exactly once is established in four special cases by means of the variation-diminishing property of totally positive kernels. Bounds are obtained for the locati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics & Probability Letters
سال: 2020
ISSN: 0167-7152
DOI: 10.1016/j.spl.2020.108898